
PUFatt: Embedded Platform Attestation Based on
Novel Processor-Based PUFs

Joonho Kong1, Farinaz Koushanfar1, Praveen K. Pendyala2,
Ahmad-Reza Sadeghi3, and Christian Wachsmann4

1Dept. of ECE, Rice University
2Indian Institute of Technology, Mumbai

3Technische Universität Darmstadt
4Intel CRI for Secure Computing at TU Darmstadt

{joonho.kong, farinaz}@rice.edu, praveendath92@iitb.ac.in,
{ahmad.sadeghi, christian.wachsmann}@trust.cased.de

ABSTRACT
Software-based attestation schemes aim at proving the in-
tegrity of code and data residing on a platform to a verify-
ing party. However, they do not bind the hardware char-
acteristics to the attestation protocol and are vulnerable to
impersonation attacks.
We present PUFatt, a new automatable method for link-

ing software-based attestation to intrinsic device character-
istics by means of a novel processor-based Physically Unclon-
able Function, which enables secure timed (and even) remote
attestation particularly suitable for embedded and low-cost
devices. Our proof-of-concept implementation on FPGA
demonstrates the effectiveness, applicability and practicabil-
ity of the approach.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection

General Terms
Design, Security

Keywords
Attestation, Physically Unclonable Function (PUF)

1. INTRODUCTION
As embedded and mobile systems are increasingly perme-

ating our information ecosystem, they are also being pro-
gressively utilized in security and safety-critical applications.
This generates an increasing need for enabling technologies
to validate and verify the integrity of a system’s software
state against malicious code (attestation). For this purpose,
various approaches to attestation have been proposed [26].
Common to all of them is that the platform to be evalu-
ated (prover) sends a status report of its current configura-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC ’14, June 01-05 2014, San Francisco, CA, USA
Copyright 2014 ACM 978-1-4503-2730-5/14/06 ...$15.00.

tion to another platform (verifier) to demonstrate that it
is in a known and thus trustworthy state. Current attesta-
tion techniques can be viewed as a continuum ranging from
fully hardware-supported attestation using secure coproces-
sors [24, 36] to attestation schemes requiring no explicit
hardware support as in software-based attestation [32, 31, 6,
10, 16, 15]. The solutions based on security hardware mod-
ules (such as the TPM [36]) are inappropriate for resource-
constrained embedded systems, while purely software-based
attestation relies on strong assumptions, such as tamper-
evident hardware and out-of-band (e.g., visual) prover au-
thentication, which are hard to achieve in practice.
A practical lightweight attestation scheme for embedded

devices should have low hardware overhead and reasonable
attestation times. Software-based attestation follows this
paradigm since it does not require any cryptographic se-
crets or security hardware. However, software attestation
cannot explicitly authenticate the underlying hardware com-
ponents, making it vulnerable to impersonation attacks [30].
To address this problem timed attestation protocols have
been proposed that bind the software-attestation algorithm
to the underlying hardware, e.g., by exploiting the side-
effects of CPU operation [12] or by using security features
in hardware [29, 15, 10]. However, these approaches have
been shown to be ineffective [33] or they require secure
hardware components that are too complex or expensive
for resource-constrained embedded systems. In this con-
text, Physically Unclonable Functions (PUFs) that generate
a unique hardware-specific output (response) to each input
(challenge), are a promising technology to bind software-
based attestation schemes to a particular physical hardware
platform and enable lightweight remote attestation particu-
larly suitable for embedded devices [30].
However, since PUFs are physical structures that exploit

side-effects in chip manufacturing, they typically possess a
limited resilience against operational and environmental in-
fluences such as temperature, power supply variations or sili-
con aging effects. Hence, it is necessary to integrate effective
error correction mechanisms at the prover while at the same
time keeping the hardware overhead of their implementation
minimal. Furthermore, existing security solutions based on
PUFs typically require an extensive enrollment phase and
maintaining large challenge/response verification databases.
Contributions. In this paper, we present the design and
implementation of the ALU PUF, a novel minimalist hard-
ware trust anchor based on manufacturing variations in com-
modity processors. We demonstrate the efficiency and effec-
tiveness of the ALU PUF as a hardware trust anchor in
PUFatt, a PUF-based (remote) attestation protocol. Our

1

x0
x1
x2
x3

x4
x5
x6
x7

x0
x1
x2
x3

x4
x5
x6
x7

Arbiter 0

Arbiter 1

Arbiter 2

Arbiter 3

y0

y1

y2

y3

o0

o1

o2

o3

o′0

o′1

o′2

o′3

Synchronization
Logic

ALU 0

ALU 1

Figure 1: ALU PUF (example for 4-bit responses)

specific contributions are as follows.
ALU PUF Design. We present the ALU PUF, a novel PUF
design based on the delay difference in two different ALUs1

caused by manufacturing variations. The construction of
ALU PUFs can be readily automated during the processor
design phase by adding only a minimal number of compo-
nents, i.e., a simple synchronization logic and some arbiters
which are implementable by flip-flops.
ALU PUF based Remote Attestation Scheme. We propose
PUFatt, a new lightweight remote attestation scheme built
on top of the ALU PUF. Our attestation scheme prevents
impersonation attacks through binding software-based attes-
tation to hardware characteristics. Moreover, our trust an-
chor, the ALU PUF, is tightly-coupled with the processor
architecture and thwarts hardware-based attacks.
Implementation and Evaluation. We implemented the ALU
PUF in FPGA and show its low overhead, applicability, un-
clonability and stability.
Security Analysis. We analyze our PUF-based attestation
scheme under realistic assumptions. We show that our at-
testation method is sound and secure against impersonation
and basic hardware attacks.

2. THE ALU PUF
The ALU PUF exploits delay differences in identically de-

signed and redundantly available logic components, such as
the ALUs in a processor. Similar to the Arbiter PUF [7], the
ALU PUF exploits the time difference a signal takes to travel
along two symmetric delay paths within these components.
These paths are identical by design and shall be the same
by construction (layout), yet they incur different delays in
practice due to intrinsic manufacturing process variations.
Note that all the steps for the ALU PUF design can be read-
ily automated and integrated within the design phase of the
microprocessor. Automatable design-time optimizations are
needed to ensure symmetry of the delay paths.
ALU PUF Design. For simplicity, we illustrate the ALU
PUF design on an example with two 4-bit ALUs (Figure 1).
Note that all modern processors contain redundancies in
their ALU structure, resulting in low hardware overhead for
implementation.
ALUs consist of integrated circuits for computing arith-

metic and logic functions in hardware. In our example, each
ALU takes multiple input signals x = (x0, . . . , x7) (represent-
ing the ALU PUF challenge), guides them through a network
of gates and wires (representing delay paths) and generates
output signals o = (o1, . . . , o3) and o′ = (o′1, . . . , o′3), respec-
1Arithmetic and Logic Units (ALUs) are basic components
in any processor.

tively. Similar to the Arbiter PUF, the ALU PUF response
y = (y0, . . . , y3) is generated by arbiters depending on which
ALU’s output signals arrive first. The PUF responses are
latched to special registers (implemetable by flip-flops) in
the processor. To ensure that both ALUs are stimulated
with the same input signals at exactly the same time, a
simple synchronization logic is used. Hence, the ALUs are
utilized both as ALUs and as a PUF by only requiring a
minimal hardware overhead (i.e., flip-flops and synchroniza-
tion logic). More specifically, our ALU PUF design is based
on the carry propagation in ripple-carry adders, which are
basic ALU components. Observe that the delay characteris-
tics of the path from the inputs xi and xi+4 to the outputs
oi and o′i, respectively, depend on the inputs xi−1 and xi+3
for 1 ≤ i ≤ 3 because carry bits in the ripple-carry adders
are propagated from the LSB side to the MSB side of the
full adders.
The ALU PUF is queried by using the add assembler in-

struction. More specifically, when the ALU is in the PUF
mode (i.e., not in the general program execution mode), the
add instruction reads the PUF challenge (operands) from
the registers inside the CPU and performs the add operation.
The time-difference between the availability of the resulting
output bits computed by each ALU is then used to derive
the PUF response. Depending on the operand bit-length of
the adders in the ALU, we can easily build ALU PUFs with
an arbitrary number of response bits.
In generic pipelined processor architectures, the memory

access stage is the critical path [25]. Thus, integrating the
components needed to use the ALUs as PUFs into the pro-
cessor has only a negligible timing performance impact.
Security Objectives. The most important properties of
PUFs and hence the (security) goals of the ALU PUF are ro-
bustness, unclonability and unpredictability [21, 1, 11]. Infor-
mally, robustness means that, when queried with the same
challenge x multiple times, the PUF returns a similar re-
sponse y with high probability. Physical unclonability de-
mands that it is infeasible to produce two PUFs that cannot
be distinguished based on their challenge/response behavior.
Unpredictability requires that it is infeasible to predict the
PUF response y to an unknown challenge x, even if the PUF
can be adaptively queried a certain number of times.
PUF Response Verification. There are two approaches
to verify the responses y of the ALU PUF: (1) using a
database of challenge/response pairs (CRPs) recorded be-
fore deployment of the ALU PUF and (2) using an emula-
tion PUF.Emulate() of the ALU PUF based on a simple PUF
model H [22] (e.g., gate-level delay table lookups and delay
additions) generated during the manufacturing process of
the ALU PUF. The drawback of the database approach is
its limited scalability since it requires storing a large num-
ber of CRPs for each PUF implementation. Further, due to
the limited size of the database, this approach allows only
for a limited number of authentications since CRPs should
not be re-used to prevent replay attacks. The emulation-
based approach overcomes these drawbacks but requires a
protected interface to read out the gate-level delays required
to emulate the PUF. This interface should be only accessi-
ble by a trusted entity (e.g., the PUF manufacturer) since
otherwise the adversary could read out the gate delays and
efficiently emulate the PUF, which would violate the unpre-
dictability property. One approach to realize this interface
in an ASIC implementation of the ALU PUF is to provide
a test interface that can be permanently disabled by, e.g.,
using fuses. For our FPGA-based prototype emulation we
did not implement such an interface as the gate-level delays
were known.
Error Correction. Since we use the PUF responses as
input to the attestation algorithm, we must correct errors

2

in the PUF responses to maintain the verifiability of the
attestation result. For this purpose, we adopt the low-cost
error correction mechanism in [8]. In more detail, the PUF-
enabled device P generates helper data h, which corresponds
to the syndrome of the codeword of an error correcting code
and enables the verifying party V to reconstruct the (noisy)
response y used by P. The only logic required at P is
the syndrome generator of a linear block code, which per-
forms a simple matrix multiplication. Our implementation
of the syndrome generator uses the parity-check matrix of a
BCH[32,6,16] code, which can correct up to 16 bit errors in
a 32 bit PUF response using a 32− 6 = 26-bit helper data.
Response Obfuscation. It has been shown [27] that ma-
chine learning can be used to violate the unpredictability
goal of most delay-based PUFs. Specifically, the adversary
A can model the PUF based on a set of known CRPs that
allows A to determine the response y to any challenge x for
which A has never seen y before. To thwart these attacks,
we employ an XOR-based obfuscation network (properly de-
signed to prevent side-channels [28]).
The obfuscation works in two phases: In the first phase,

the obfuscation is performed within the 2n-bit PUF response
y0. Specifically, the i-th bit y0[i] and the (i + n)-th bit
y0[i + n] of y0 are XORed, resulting in an n-bit word a0.
That is a0[i] := y0[i]⊕ y0[i + n] for 1 ≤ i ≤ n. The same is
performed for a second PUF response y1 to obtain an n-bit
word a1. These two words are then concatenated to a 2n-bit
word b0 := a0||a1. The second obfuscation phase uses four
2n-bit words b0, . . . , b3 from the first obfuscation phase and
XORs them, resulting in a 2n-bit output z :=

⊕3
j=0 bj .

Note that the internal registers of the obfuscation network
are not visible to the outside, i.e., the content of these reg-
isters cannot be accessed by code running on the processor.
This ensures that the adversary cannot directly read the
PUF responses and circumvent the obfuscation mechanism
through any program running on the processor. Obfuscation
must be performed after error correction to maintain verifi-
ability of the outputs of the obfuscation network. This is
because only a few bit errors in the input to the obfuscation
network may incur a large number of output errors.
Architectural Support. To use the ALU both as ALU
and PUF, we extend the instruction set of the microproces-
sor by two CPU instructions pstart and pend that start and
stop the PUF operation of the ALU, respectively. pstart
switches the ALUs into PUF mode. A simple synchroniza-
tion logic between both ALUs ensures that both ALUs are
triggered at the same time. After the PUF response has
been generated, the pend instruction forwards the PUF re-
sponse y to the post-processing logic and switches the pro-
cessor back to normal mode. Since the PUF operation is
performed in PUF mode, there is no performance impact on
programs executed in normal mode.

3. ALU PUF-BASED ATTESTATION
PUFatt, our remote attestation scheme combines software-

based attestation with PUFs by adapting the approach in [30].
The idea is to bind the attestation scheme to the prover hard-
ware by entangling the attestation checksum computation
with the PUF. This is done in a way that ensures outsourc-
ing this computation to another device is infeasible due to
the limited capacity of the communication interfaces of the
prover. In the following, for brevity we write PUF() to de-
note the ALU PUF including the error correction mechanism
and the obfuscation network.
System Model. In our attestation scheme a prover P re-
ports the integrity of its (program) memory content S to a
verifier V. While P is an embedded device with constrained
resources (e.g., a sensor node), V is a more powerful com-

Verifier V Prover P
Stores S , H , δ Stores S

for i = 1, . . . ,N do

endfor

zi−1 ← PUF(xi−1)

(ri, xi)← SWAT(S , ri−1, zi−1)

for i = 1, . . . ,N do

endfor

zi−1 ← PUF.Emulate(H , xi−1)

(ri, xi)← SWAT(S , ri−1, zi−1)

Store current time t

Store current time t ′

(x0, r0)
U←− {0, 1}`x+`r

If t − t ′ ≤ δ ∧ r = rN then accept

Else reject

x0, r0

r r ← rN

Figure 2: PUF-based attestation scheme

puting device (e.g., a smartphone or a laptop).
Security Objectives. An attestation scheme should achieve
correctness and soundness [2]. Correctness informally means
that an honest P whose memory content matches the mem-
ory content S expected by an honest V should always be
accepted. Soundness informally means that any P with a
program memory content different from S should succeed
in making V accept only with negligible probability. Fur-
thermore, the PUF-based attestation scheme should provide
prover authentication, i.e., assure to V that the attestation
algorithm has been computed by a particular P.
Assumptions. As is common in the literature on software-
based attestation [32, 31, 6, 10, 16, 15], we assume the at-
testation algorithm and its implementation used by P to be
optimal in the sense that it is hard for the adversary to find
another algorithm or implementation that can be executed
by P in less time. Moreover, as in [30], we assume that the
bandwidth of the communication interfaces of P is far lower
than the bandwidth of the interface between the CPU and
the PUF of P. Further, we assume that V can emulate the
PUF of P, e.g., by knowing the gate-level delay table of the
ALU PUF (Section 2).
Trust and Adversary Model. The adversary A can eaves-
drop on and modify any data transmitted between P and
V. Further, A knows all data stored in the memory of P
and can modify it. Note that by modifying the memory con-
tent of P, A can change the program code and thus has full
control of P. However, as we show later in Section 4.1, A
cannot clone PUF() of P and it is infeasible for A to predict
the output z of PUF() to a new challenge x for which A has
never seen z before. Moreover, any attempt of A to modify
the hardware of P to enhance its computing and/or memory
capabilities changes the challenge/response behavior of the
PUF. Finally, V is trusted.
Protocol Specification. The PUFatt attestation scheme
works as follows (Figure 2): The verifier V sends a random
PUF challenge x0 and a random attestation challenge r0 to
the prover P. Based on these challenges and its memory
content S , P iteratively computes the attestation response r
using PUF() and the software attestation algorithm SWAT().
Eventually, P sends r to V, who accepts only if P responded
within the expected time bound δ and if r matches the ex-
pected attestation response. Hereby, V recomputes r using
an emulation PUF.Emulate() of P’s PUF() (Section 2).
Instantiation. The attestation algorithm SWAT() can be
instantiated based on any known software-based attestation
scheme (e.g., [31, 37, 3]) with only minor modifications to in-
tegrate the ALU PUF. For our implementation, we adapted
the algorithm in [31], which iteratively computes the attes-
tation response r . As with most existing software-based
attestation schemes, this algorithm samples a memory word
of the memory S of the prover P in each round and uses it as

3

0 1

0.08
0.09

0.1
w/ obfuscation
w/o obfuscation

0.06
0.07
0.08

ty
 M

as
s

0.04
0.05

ro
ba

bi
lit

0 01
0.02
0.03Pr

0
0.01

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Hamming Distance

Figure 3: Inter-chip HD results

input to a compression function that iteratively computes r
[2]. We adapted this algorithm to generate PUF challenges
xi and to take the output zi of PUF() as additional input to
the compression function in each round. Note that we omit
the details on generating r due to limited space. For more
details, please refer to the checksum algorithm in [31].

4. EVALUATION

4.1 Evaluation of the ALU PUF
Our evaluation results are based on a gate-level delay

simulation of the ALU PUF. We leverage the delay model
from [23] to calculate the gate-level delay under process vari-
ations. Our emulation uses the quad-tree process variation
model [4], which assigns different threshold voltage varia-
tions to all gates in all simulated chips and targets the 45 nm
technology node. Following [25], we assume that the dis-
tribution of the threshold voltage Vth in the chips follows
a Gaussian distribution N(µ, σ2) with σ

µ
= 0.1. We also

present inter- and intra-chip distance measurement results
of two ALU PUF implementations in two different FPGAs.
Unpredictability. We empirically assess the unpredictabil-
ity of the ALU PUF by means of the Hamming distance
(HD) between the responses y of different PUFs to the same
challenge x (inter-distance) [21]. Specifically, we count the
occurrences of each HD for 1, 000, 000 different challenges x.
Our inter-chip HD results are presented in Figure 3, which

shows both the inter-chip HD of the raw PUF responses
(before obfuscation) and the inter-chip HD of the obfuscated
PUF responses. The ideal inter-chip HD would be 16 bits
(50%). Before and after obfuscation, the average inter-chip
HD is 11.48 bits (35.9%) and 14.28 bits (44.6%), respectively.
The ALU PUF shows a fairly good unpredictability which is
comparable to other existing PUF designs [21], e.g., the Feed-
forward Arbiter PUF (38% inter-chip HD) [17]. Further, as
expected, the XOR-based obfuscation mechanism improves
the unpredictability of PUF responses.
Robustness. We measure the robustness of the ALU PUF
by means of the HD between the responses y of the same
ALU PUF with regards to same challenge x under differ-
ent operating conditions [21]. We consider three test cases
that can affect the intra-chip HD: voltage variations, tem-
perature variations and arbiter metastability. We examined
voltage variations from 90% to 110% of the nominal ALU
PUF supply voltage. Further, we consider operating tem-
peratures between −20◦C and +120◦C. Again, HDs are are
computed based on 1, 000, 000 different challenges x.
The intra-chip HD results of the raw PUF responses (i.e.,

without error correction and obfuscation) are shown in Fig-
ure 4. The ideal intra-chip HD would be 0 bits (0%). The
intra-chip HD between repetitive evaluations of the same
ALU PUF is 3.62 bits (11.3%), which is comparable to other
delay-based PUFs, e.g., the Feed-Forward Arbiter PUF (9.8%)

0.25

0 15

0.2

M
as

s

0 1

0.15

bi
lit

y M

0 05

0.1

Pr
ob

a

0

0.05

0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Hamming Distanceg

Figure 4: Intra-chip HD results under voltage and
temperature variations and arbiter metastability

Table 1: FPGA implementation (16-bit ALU PUF)
Component LUTs Registers XORs BRAM FIFO
ALU PUF 94 80 32 0 0

Synchronization logic 9 7 0 0 0
Syndrome generator 1,976 880 0 3 0

Obfuscation logic 224 0 0 0 0
PDL logic 4,096 128 0 0 0
SIRC logic 2,808 1,826 0 38 2

[17]. The ALU PUF is quite robust even under extreme en-
vironmental conditions. This is because the ALUs’ symmet-
ric delay paths are very similarly affected, which compen-
sates for the effect of the operating conditions. Since the
redundant ALUs are in close proximity, the variations due
to systematic spatial variations are also minimal. Hence, the
main factor affecting the intra-chip HD is arbiter metasta-
bility. According to our simulation results and considering
the error correction mechanism used, our PUF exhibits only
a false negative rate of 1.53 × 10−07, which is sufficient for
most practical applications.
Implementation. We implemented the core parts of the
ALU PUF in Xilinx Virtex 5 XC5VLX110T FPGA devices.
The implemented PUF is based on a 16-bit model (instead of
32-bit) due to the resource constraints of the given FPGA.
As pointed out in [20], implementing two completely sym-
metric delay paths in FPGA is challenging. Hence, we em-
ployed programmable delay lines (PDLs) to tune the PUF
delay. Specifically, oi and o′i (where 1 ≤ i ≤ 16) from ALU 0
and ALU 1 are passed through 64 stages of PDL switches to
compensate for the skews in delays that occur due to the au-
tomated routing optimization performed by the Xilinx ISE
tools. The blocks’ placement is done manually to achieve
the maximally achievable symmetry of the delay lines. The
delay tuning process is carried out as described in [20]. By
changing the PDL inputs, we calibrate the delay of the two
symmetric delay paths so that on average the occurrence of
0 and 1 at each arbiter is about the same.
Table 1 summarizes the results from implementing our

ALU PUF from scratch (i.e., when one does not re-use an
existing ALU). The ALU PUF itself yields a significantly
low hardware overhead compared to the supporting FPGA
logic such as the PDL and SIRC logic which is used for PUF
data collection [5]. However, when implementing the ALU
PUF in ASIC, this supporting logic is not needed.
We also measured the inter- and intra-chip HDs of two

16-bit ALU PUF implementations on two different FPGA
boards. The inter-chip HD is 3.0 (18.8%) and 6.6 (41.3%)
bits without and with the XOR obfuscation, respectively.
The intra-chip HD is 2.9 bits (18.6%), which is a little higher
than in our simulation due to environmental fluctuations.
The FPGA measurement results are consistent with our sim-
ulation results.
Side-channel Attack Resiliency. It has been shown [27]
that most existing delay-based PUFs can be efficiently em-

4

ulated using machine learning techniques, which violates
the unclonability and unpredictability goals. We employ
an XOR-based obfuscation network [34], which significantly
increases the complexity of these attacks making them inef-
fective in practice [27]. It has been recently shown [18] that
this approach to obfuscation can be attacked by combin-
ing side-channel analysis with machine learning techniques.
However, several countermeasures are possible to prevent
this attack [18, 28]. For instance, it is possible to minimize
the side-channel leakage by making the timing behaviour
and power consumption of the device independent of its in-
puts. Though we do not employ these techniques in our pro-
totype PUF implementation, they can be easily deployed in
our PUF architecture with a small hardware overhead.

4.2 Security of the Attestation Scheme
In this section, we evaluate the security of the PUF-based

attestation scheme presented in Section 3. A formal analy-
sis based on the security framework in [2] is planned as fu-
ture work. Due to the robustness of the PUF (Section 4.1)
and the error correction mechanism used (Section 2), PUF()
(which includes the error correction mechanism and obfus-
cation network) always returns the same output z to the
same challenge x. Further, we assume that the underlying
software-based attestation scheme is sound and correct.
Soundness. Due to the correctness of the underlying soft-
ware attestation scheme and the robustness of PUF(), an
honest prover P will always compute the correct attestation
response r and be accepted by the verifier V.
Correctness. Our PUF-based attestation scheme is based
on a secure software attestation scheme whose compression
function has been modified to take the output z of PUF() as
an additional input using a similar approach as in [30]. This
minor modification preserves the structure of the attestation
algorithm and does not affect the correctness property of the
underlying software attestation scheme [30].
Prover Authentication. The major objective of combin-
ing software-based attestation with PUFs is to assure to the
verifier V that the attestation response r has been computed
by the prover P. There are two approaches for adversary A
to violate prover authentication: (1) emulating PUF() of
P on another device and (2) using PUF() of P as an or-
acle and computing r on another device. By assumption,
A does not know the gate-delay table H of PUF() and, as
discussed in Section 2, the most effective known emulation
attacks [27] are infeasible in practice. Hence, it is infeasible
for A to predict the correct outputs zi of PUF() which are
required to compute r . However, A could try to use PUF()
of P as an oracle, meaning that whenever A needs an output
zi of PUF() for computing r , A may query PUF(). Since by
assumption, the bandwidth of the external communication
interfaces of P is much lower than the bandwidth needed to
transfer all zi to A in time, A does not know at least one
zi. This means that A can predict the correct attestation
response r only with the same probability as predicting the
response of PUF(), which according to the evaluation of the
ALU PUF (Section 4.1) is very low.
Overclocking Attack Resiliency. One problem of purely
software-based attestation schemes is that the adversary A
could simply overclock the CPU of prover P to circumvent
the enforcement of time-bound δ. Our ALU PUF-based at-
testation scheme is secure against this attack since the ALU
PUF operates along with the CPU clock network. Thus,
when A increases the clock frequency of the CPU, the clock
cycle time will be reduced. This impacts the setup time
Tset of the registers (flip-flops) used to store the raw PUF
response y (i.e., before error correction and obfuscation).
Specifically, the clock edge may reach the output flip-flops of
the ALU before y is latched to them, resulting in wrong PUF

responses. For correct PUF operation, the required condi-
tion is: TALU + Tset < Tcycle, where Tcycle is the duration
of a clock cycle and TALU is the maximum signal propaga-
tion latency taken from the input flip-flop of the ALU to the
output flip-flop of the ALU. When this condition is fulfilled,
the ALU PUF will operate reliably. Thus, if A increases
the clock frequency (hence, reducing the clock cycle time)
such that Tset becomes too short, the ALU PUF will gener-
ate wrong responses. Hence, it is crucial to carefully set the
clock frequency used for attestation.
Assume that A tries to hide the presence of malware at
P by using a modified attestation algorithm. This modifi-
cation will increase the number of clock cycles required to
compute the correct attestation response r because A must
perform additional computations to hide the presence of the
malware. Now assume that A increases the clock frequency
to stay within the time-bound δ of the attestation scheme,
i.e., to compensate for the increased number of clock cycles
taken by the modified attestation algorithm. This means
that CA

CSWAT
< FA

Fbase
, where CA and CSWAT are the number of

clock cycles taken by the modified and the original attesta-
tion algorithm, respectively; FA is the overclocked frequency
used by A to circumvent the time-bound enforcement; and
Fbase is the default clock frequency of P expected by V.
To thwart the overclocking attack, the base clock frequency

Fbase = T−1
base must be carefully chosen so that any attempt

to increase the clock frequency of P results in a too short
setup time Tset, and thus in wrong PUF responses. This
implies that: TALU +Tset < Tbase < (TALU +Tset) · FA

FALU+set
,

where FALU+set is the minimum required clock frequency for
PUF operation and setup time. As long as Tbase fulfills this
condition, the ALU PUF will generate reliable responses.
Otherwise, the attack will be detected by either wrong re-
sponses from the ALU PUF (due to the setup time violation)
or the time-bound enforcement.

5. RELATED WORK
Timed Attestation. Timed attestation is a promising ap-
proach to verify the integrity of the software state of em-
bedded systems. Previous work proposed to bind software-
based attestation [32, 31, 6, 10, 16, 15] to the prover hard-
ware by exploiting hardware-specific effects, such as caching
behavior [12]. However, this was shown to be insufficient [33].
Other works used secure co-processors for more accurate
time measurements [29] or validation of intermediate check-
sum results [10]. However, these approaches are not suit-
able for cost-effective embedded devices and cannot prevent
proxy attacks. VIPER [16] uses a repeated, precisely timed
sequence of attestation challenges in a local setting to assure
that the checksum computation is not delegated to another
device. PUFs have been proposed as trust anchors for at-
testation [30]. However, substantial practical issues such as
the access speed of the PUF and the viability of querying
the PUF in parallel to the software attestation algorithm
remained unanswered in the earlier work.
Physically Unclonable Functions (PUFs). These prim-
itives are an emerging technology for secure authentication
and key storage. An overview of different PUF types, secu-
rity definitions and requirements can be found in [21, 14, 1].
A processor architecture which supports secure execution
and secure key storage based on PUFs was proposed in [35].
Processor-based PUFs that are triggered by CPU instruc-
tions were also proposed in [19]. However, this approach is
vulnerable to environmental fluctuations since it is based on
measuring the absolute latency differences across the chips
instead of using relative latency differences, as in our design.
In [13], a processor-based PUF structure was proposed, but
the focus was on the aging-based response tuning and not

5

software attestation.
Other PUFs using existing on-chip structures, e.g., memory-

based PUFs [38, 9], have several limitations: (1) they only
support a small number of challenge-response pairs which
are used only for key generation and not for authentication,
and (2) they can be queried only directly after the power-up,
making it impractical to query them afterwards. In contrast
our ALU PUF design leverages redundant components in
microprocessors, which significantly reduces the hardware
overhead required for implementation.

6. CONCLUSION
We present ALU PUF, a novel PUF design which enables

a paradigm shift in secure software attestation. Our new
PUF design is based on the delay differences in redundantly
available components of microprocessors. ALU PUF is read-
ily integrated as trust anchor into the PUF-based attestation
scheme for embedded systems. We implemented the ALU
PUF in FPGA and demonstrated its good statistical prop-
erties and low hardware overhead. The ALU PUF-based
attestation scheme enables the secure (remote) attestation
of embedded devices and, in contrast to previous approaches,
allows impersonation attacks to be detected. Further, due
to tight coupling of the ALU PUF and the processor archi-
tecture, our PUF prevents overclocking attacks, which are
a threat to purely software-based attestation schemes. Our
new scheme provides a low-cost attestation mechanism tai-
lored to the resource-constraints of lightweight embedded
systems.
Acknowledgements. This work was supported in parts
by NSF career grants (No. 0644289 and 1116858) and ARO
YIP grant (R17450).

7. REFERENCES
[1] F. Armknecht, R. Maes, A.-R. Sadeghi, F.-X. Standaert, and

C. Wachsmann. A formalization of the security features of
physical functions. In IEEE Symposium on Security and
Privacy (S&P), 2011.

[2] F. Armknecht, A.-R. Sadeghi, S. Schulz, and C. Wachsmann. A
security framework for the analysis and design of software
attestation. In ACM Conference on Computer and
Communications Security (CCS), 2013.

[3] Y.-G. Choi, J. Kang, and D. Nyang. Proactive code verification
protocol in wireless sensor network. In Computational Science
and Its Applications (ICCSA), 2007.

[4] B. Cline, K. Chopra, D. Blaauw, and Y. Cao. Analysis and
modeling of CD variation for statistical static timing. In
IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), 2006.

[5] K. Eguro. SIRC: An extensible reconfigurable computing
communication API. In IEEE Annual International
Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2010.

[6] R. W. Gardner, S. Garera, and A. D. Rubin. Detecting code
alteration by creating a temporary memory bottleneck. IEEE
Transactions on Information Forensics and Security, 2009.

[7] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas. Silicon
physical random functions. In ACM Conference on Computer
and Communications Security (CCS), 2002.

[8] A. Herrewege, S. Katzenbeisser, R. Maes, R. Peeters, A.-R.
Sadeghi, I. Verbauwhede, and C. Wachsmann. Reverse fuzzy
extractors: Enabling lightweight mutual authentication for
PUF-enabled RFIDs. In Financial Cryptography and Data
Security (FC). 2012.

[9] D. Holcomb, W. Burleson, and K. Fu. Power-up SRAM state as
an identifying fingerprint and source of true random numbers.
IEEE Transactions on Computers, 58(9), 2009.

[10] M. Jakobsson and K.-A. Johansson. Retroactive detection of
malware with applications to mobile platforms. In Workshop
on Hot Topics in Security (HotSec), 2010.

[11] S. Katzenbeisser, Ünal Kocabaş, V. Rozic, A.-R. Sadeghi,
I. Verbauwhede, and C. Wachsmann. PUFs: Myth, fact or
busted? A security evaluation of physically unclonable
functions (PUFs) cast in silicon. In Workshop on
Cryptographic Hardware and Embedded Systems (CHES),
2012.

[12] R. Kennell and L. H. Jamieson. Establishing the genuinity of
remote computer systems. In USENIX Security Symposium,
2003.

[13] J. Kong and F. Koushanfar. Processor-based strong physical
unclonable functions with aging-based response tuning. IEEE
Transactions on Emerging Topics in Computing, PP(99),
2013.

[14] F. Koushanfar and A. Mirhoseini. A unified framework for
multimodal submodular integrated circuits Trojan detection.
IEEE Transactions on Information Forensics and Security,
2011.

[15] X. Kovah, C. Kallenberg, C. Weathers, A. Herzog, M. Albin,
and J. Butterworth. New results for timing-based attestation.
In IEEE Symposium on Security and Privacy (S&P), 2012.

[16] Y. Li, J. M. McCune, and A. Perrig. VIPER: Verifying the
integrity of PERipherals’ firmware. In ACM Conference on
Computer and Communications Security (CCS), 2011.

[17] R. Maes and I. Verbauwhede. Physically unclonable functions:
A study on the state of the art and future research directions.
In Towards Hardware-Intrinsic Security. Springer, 2010.

[18] A. Mahmoud, U. Rührmair, M. Majzoobi, and F. Koushanfar.
Combined modeling and side channel attacks on strong PUFs.
ePrint, 2013.

[19] A. Maiti and P. Schaumont. A novel microprocessor-intrinsic
physical unclonable function. In Field Programmable Logic
and Applications (FPL), 2012.

[20] M. Majzoobi, F. Koushanfar, and S. Devadas. FPGA PUF
using programmable delay lines. In Information Forensics and
Security (WIFS), 2010.

[21] M. Majzoobi, F. Koushanfar, and M. Potkonjak. Techniques for
design and implementation of secure reconfigurable PUFs.
ACM TRETS, 2(1), 2009.

[22] M. Majzoobi, M. Rostami, F. Koushanfar, D. S. Wallach, and
S. Devadas. Slender PUF protocol: A lightweight, robust, and
secure authentication by substring matching. In IEEE
Symposium on Security and Privacy Workshops (SPW), 2012.

[23] D. Markovic, C. Wang, L. Alarcon, T.-T. Liu, and J. Rabaey.
Ultralow-power design in near-threshold region. In Proceedings
of the IEEE, 2010.

[24] J. Nick L. Petroni, T. Fraser, J. Molina, and W. A. Arbaugh.
Copilot — A coprocessor-based kernel runtime integrity
monitor. In USENIX Security Symposium, 2004.

[25] Y. Pan, J. Kong, S. Ozdemir, G. Memik, and S. W. Chung.
Selective wordline voltage boosting for caches to manage yield
under process variations. In Design Automation Conference
(DAC), 2009.

[26] B. Parno, J. M. McCune, and A. Perrig. Bootstrapping trust in
commodity computers. In IEEE Symposium on Security and
Privacy (S&P), 2010.

[27] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and
J. Schmidhuber. Modeling attacks on physical unclonable
functions. In ACM Conference on Computer and
Communications Security (CCS), 2010.

[28] U. Rührmair, X. Xu, J. Sölter, A. Mahmoud, F. Koushanfar,
and W. Burleson. Power and timing side channels for pufs and
their efficient exploitation. IACR Cryptology ePrint Archive,
2013.

[29] D. Schellekens, B. Wyseur, and B. Preneel. Remote attestation
on legacy operating systems with Trusted Platform Modules.
Science of Computer Programming, 2008.

[30] S. Schulz, A.-R. Sadeghi, and C. Wachsmann. Short paper:
Lightweight remote attestation using physical functions. In
ACM Conference on Wireless Network Security (WiSec),
2011.

[31] A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. Khosla.
SCUBA: Secure code update by attestation in sensor networks.
In ACM Workshop on Wireless security (WiSe), 2006.

[32] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and
P. Khosla. Pioneer: Verifying integrity and guaranteeing
execution of code on legacy platforms. In ACM Symposium on
Operating Systems Principles (SOSP), 2005.

[33] U. Shankar, M. Chew, and J. D. Tygar. Side effects are not
sufficient to authenticate software. In USENIX Security
Symposium, 2004.

[34] G. E. Suh and S. Devadas. Physical unclonable functions for
device authentication and secret key generation. In Design
Automation Conference (DAC), 2007.

[35] G. E. Suh, C. W. O’Donnell, and S. Devadas. AEGIS: A
single-chip secure processor. Information Security Technical
Report, 2005.

[36] Trusted Computing Group (TCG). TPM Spec., 2004.
[37] Y. Yang, X. Wang, S. Zhu, and G. Cao. Distributed

software-based attestation for node compromise detection in
sensor networks. In Symposium on Reliable Distributed
Systems (SRDS), 2007.

[38] Y. Zheng, M. Hashemian, and S. Bhunia. RESP: A robust
physical unclonable function retrofitted into embedded SRAM
array. In Design Automation Conference (DAC), 2013.

6

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20140421094700
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 Fixed
 Left
 7.2000
 0.0000

 Both
 1
 AllDoc
 1

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 28.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 28.8000
 0.0000

 Both
 1
 AllDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryList_V1
 qi2base

